Frances Blanchette

Title: Negative Concord and Double Negation in American Engisheses

Core Areas: Syntax and Semantics

ABSTRACT: This paper argues that Negative Concord is generated by the grammars of all English varieties, but just not “realized” (in the sense of Barbiers 2005) in the standardized variety. I show that Double Negation constructions, wherein two negative elements yield a doubly negated meaning, are formed identically in all English varieties. Previous Minimalist Agree approaches to Negative Concord are untenable because they cannot account for this fact. This paper employs the Minimalist concept of phases as spell-out domains, as well as the derivational assignment of the pragmatic feature [contrast], to successfully capture the facts of Negative Concord and Double Negation in English. In so doing, it contributes new insight into the representation of sentential negation.
Sentential Negation is Feature Spreading: Evidence from English
Frances Blanchette, CUNY Graduate Center

1. Introduction

Negative Concord (NC) is a phenomenon realized in many world languages, including English varieties (cf. Wolfram and Fasold 1974; Wolfram and Christian 1976; Sells et al. 1996; Green 2002). NC constructions are single sentential negations with two or more negatives, as follows:

(1a) John didn’t have no breakfast.
 ‘John didn’t have (any) breakfast.’

In (1a) both didn’t and no breakfast mark negation, yet the structure is interpreted as singly negated.

NC is not realized in standardized English, so many scholars have assumed that “‘NC-varieties” of English are grammatically distinct in this regard (cf. the literature from Wolfram and Fasold 1974 through Zeijlstra 2004). These scholars assume that in standardized English, the sentence in (1a) is generated only as a semantically double negative (DN), and each negative element contributes a negation:

(1b) John didn’t have no breakfast.
 ‘It is not the case that John had no breakfast.’
 (= ‘John had breakfast.’)

Recent generativist models of NC have employed syntactic Agree (cf. Zeijlstra 2004; Haegeman & Lohndal 2010). Under Agree, negative elements do not contribute a negative meaning, but rather agree with another phonologically null yet semantically negative element in
the structure. There are two major problems with this approach. One problem is that it makes the wrong predictions: If an “NC-variety’s” negative elements are incapable of independently contributing a negative meaning, (2) should not be interpretable as a DN in that variety. However, as Coles-White (2004) shows, (2) can be a DN in all English varieties:

(2) The boy didn’t cut down the fence with no gate. (Coles-White 2004)
 ‘It is not the case that the boy cut down the fence that doesn’t have a gate.’

The other problem with the Agree approach is that it does not account for the fact DN constructions like (1b) require special contexts.

This paper presents a novel approach to the modeling of sentential negation, NC, and DN that makes correct predictions and accounts for a broader range of facts than Agree. I hypothesize that NC is grammatical (=generated by the grammar) in all English varieties. To explain why NC is unacceptable in standardized English, I appeal to the logic of Barbiers (2005), who argues that not all structures that can be generated by a grammar are necessarily realized in usage.

This paper is structured as follows. Section two illustrates the relevant phenomena. Section three provides some theoretical background, and shows how recent Agree approaches have led us astray. Section four describes the tools employed in my model of sentential negation, NC, and DN. Section five applies these tools, and addresses the problem of usage with a discussion of Barbiers (2005). Section six concludes with a summary and articulation of an interesting prediction made by my approach. But first, some terms.
1.1 Some terms

2. The Phenomena

This section illustrates the phenomena of negation, NC, and DN in English varieties. I explain the difference between sentential and constituent negation, take stock of the ways English marks negation, and conclude by illustrating NC and DN.

2.1 Sentential and Constituent Negation

Sentential negation is defined in logical terms as the reversal of a proposition’s truth value (cf. Frege 1960). If the affirmative proposition in (3a) is true, then its negated counterpart in (3b) is false, and vice versa:

(3a) It’s warm outside.

(3b) It isn’t warm outside.

While sentential negation operates on propositions (cf. 3b), constituent negation has a smaller domain. Constituent negation is so named because its scopes within a constituent, such
as a noun phrase or a prepositional phrase. Distinguishing between sentential and constituent negation is not always straightforward. Klima (1964) developed a series of tests with the purpose of distinguishing between the two. One is “the not even test”, based on the observation that only sentential negation is compatible with the tag *not even*:\(^1\)

(3a’) #It’s warm outside, not even a little. \(\text{affirmative}\)

(3b’) It isn’t warm outside, not even a little. \(\text{sentential negation}\)

(3c) # It’s so warm you can go out with no coat, not even a sweater. \(\text{constituent negation}\)

The affirmative sentence (3a’) is incompatible with the tag *not even*, as is (3c) with the negated constituent *with no coat*, but the negated proposition (3b’) takes the tag felicitously.\(^2\) This paper makes a specific claim regarding the representation of *sentential* negation, so it is important to note the distinction between constituent and sentential negation.

2.2 How English marks negation

Like most languages, English has multiple ways of marking negation. This is the sole apparent purpose of *n’t* and *not*, so I follow Zanuttini (1996) in calling these negative markers. Markers *n’t* and *not* have different behaviors: While *not* is freestanding, *n’t* affixes to dummy tense markers, copulas, auxiliaries (*don’t, ain’t*), and modals (*won’t, couldn’t*). It does not attach to lexical verbs (*walkn’t*) or any other categories (Zwicky & Pullum 1983). Constructions with

\(^1\) Throughout this paper, the symbol # is used to indicate infelicity, which means pragmatic or semantic ill-formedness (cf. López 2009). This is distinct from *, which indicates ungrammaticality (where ungrammatical means not generated by the grammar) (cf. Chomsky 1986 et seq.).

\(^2\) Despite the fact that the empirical scope of the tests proposed in Klima (1964) was questioned by Jackendoff (1969, 1972), the *not even* test illustrates that some analysis is required to determine the scope of negation.
the negative marker *n’t* are the focus of this paper. The syntactic behavior of *not* is special (cf. Baker 1991), and distinct from that of *n’t* (cf. Pollock 1989; Zanuttini 1996). Specifically, it is unclear whether *not* is productively employed in NC constructions in exactly the same way as *n’t* (Lisa Green, p.c.).³ An examination of *not* is therefore set aside for now.

English also has constituents that encode negation within their internal structure, such as *nothing, nobody, never, and no work*. The DP *nothing*, for example, applies to things that share the property of being non-human, as compared with *nobody*, which applies to only human entities. Given that these elements constitute a negation plus something else, I call them negative constituents.⁴

Henceforth, I use the terms *negative marker* and *negative constituent* to refer to the elements as defined above, and I use the term *negative element* when referring to both.

2.3 Negative Concord

In NC constructions, two or more negative elements yield a single *sentential* negation. Researchers have included the following among languages that instantiate NC: Romance (cf. Zanuttini 1991,1997; Herburger 2001; Ovalle & Guerzoni 2003, Déprez & Martineau 2004), West Flemish (cf. Haegeman & Zanuttini 1991; Zeijlstra 2004; Haegeman & Lohndal 2010); and non-standard varieties of English like AppE (cf. Hackenberg 1972; Wolfram and Fasold 1974; Wolfram and Christian 1976; Montgomery and Hall 2004) and AAE (cf. Labov 1972; Wolfram and Fasold 1974; Montgomery and Hall 2004; Sells et al. 1996; Green 2002; Coles-White 2004). The following examples illustrate NC in English (negative elements in **bold**):

³ Interestingly, in virtually all of the reports of NC in English varieties, constructions with *n’t*, but not *not*, are employed as examples (cf. Wolfram and Fasold 1974; Wolfram and Christian 1976; Green 2002; Montgomery and Hall 2004). As such, the question of how *not* behaves in NC constructions remains open.
⁴ Negative constituents are sometimes called *n-words*, a term coined by Laka (1990).
I don’t never have no problems.
‘I don’t ever have (any) problems.’
(= ‘I never have (any) problems.’)

They don’t have no work in the winter.
‘They don’t have (any) work in the winter.’

Example (4) contains three negative elements (n’t, never, and no problems), and example (5) contains two (n’t and no work), but both are sentential negations. Examples like (4) and (5) can be used out of the blue, and have no special discourse status. This fact will become relevant when we contrast NC with DN.

2.4 Double Negation

DN constructions yield two semantic negations (cf. Ovalle & Guerzoni, 2003; Zeijlstra, 2004; Puskás, under review). It is generally assumed that NC is not grammatical in SAE (cf. Wolfram and Fasold 1974; Zanuttini 1996; Herburger 2001; Green 2002; Zeijlstra 2004). Under this assumption (which is directly challenged in this paper), strings like (5), repeated here as (6), should only be DN constructions in SAE (small caps indicate contrastive stress):

They DON’T have no work in the winter.
DN: ‘It is not the case that they have no work in the winter.’

SAE speakers agree that (6), with contrastive stress on the negative auxiliary (DON’T), is odd when stated out of the blue. This fact distinguishes the DN construction from its affirmative counterpart (i.e., They/The people have work in the winter), which has identical truth conditions.

5 In fact, the proposal detailed in section five predicts that speakers of all English varieties will find (6) infelicitous when employed in an out-of-the-blue context. Further research is needed to determine whether this prediction is borne out.
but can be used out of the blue. Examples (7) and (8) are two contexts from SAE, one in which only the single negation is felicitous (7), and one in which only the DN construction works (8):

(7) SAE Speaker A: Times have been tough for people since the mines shut down.
SAE Speaker B: # Yeah, they DON’T have no work in the winter. (DN)
SAE Speaker B’: Yeah, they have no work in the winter.6 (single negation)

(8) SAE Speaker A: People haven’t had (any) work since the mines shut down.
SAE Speaker B: They DON’T have no work in the winter, there’s all that plowing to do. (DN)
SAE Speaker B’: # They have no work in the winter, there’s all that plowing to do. (single negation)

These examples illustrate that DN is subject to contextual restrictions. An effective model of DN should account for this fact.

Also relevant, but often ignored, is the fact that DN is possible in NC languages (Puskás, to appear).7 A successful model of DN should encompass this fact as well. In section 5.3.2 I discuss in detail how speakers of all English varieties employ and interpret DN (cf. Coles-White 2004).

2.5 Conclusion

I am obviously neither the first nor the last to attempt an analysis of the facts laid out above. In the next section, I summarize previous proposals for the modeling of negation, NC,

6 The sentence They don’t have any work in the winter is also felicitous in this context, and has identical truth conditions. This fact is addressed in section 5.5.
7 See Puskás (to appear) for an account of DN in Hungarian, an NC language.
and DN. I hope to show that my novel approach is both necessary and grounded within the theoretical framework that precedes it.

3. Previous Proposals

This section discusses existing models of sentential negation and NC, chosen on the basis of their relevance to my proposal. I begin with Haegeman & Zanuttini’s (1991) generative formulation of the Neg Criterion, which schematizes sentential negation as the relation between a negative head and operator. I then discuss Zeijlstra’s (2004) influential Minimalist approach. I aim to provide background on how sentential negation and NC have been modeled in the generative framework, demonstrate how recent accounts have led us astray, and illustrate the need for a new approach.

3.1 The Neg Criterion

Pollock (1989) first proposed that a Negative Phrase (NegP) projects in the syntax, as follows:

![equation]

Haegeman and Zanuttini (1991) adopt and modify Pollock’s NegP. Using data from West Flemish, they argue that sentential negation is subject to a condition on representation, called the Neg Criterion. The Neg Criterion requires that (i) negative heads be structurally specified by a (phonologically overt or covert) negative operator and (ii) negative operators reside in the

8 For a comprehensive bibliography on the syntax and semantics of negation, I refer the reader to Horn (2001) as well as the literature review in Zeijlstra’s (2004) dissertation.
specifier of a negative head. This criterion is usually satisfied in NegP or CP, and is illustrated here with NegP:

\[(10)\]

![Diagram of NegP structure](image)

The Neg Criterion must be satisfied universally by L(ogical) F(orm). In some languages, it must be satisfied by surface structure. West Flemish, an NC variety, is one such language. The following example of NC in West Flemish illustrates one way to satisfy Neg Criterion (Haegeman & Zanuttini’s (28): 245):

\[(11)\] Over **niemand** **en**-klaapt Marie tegen myn.
about nobody NEG-talks Marie against me
‘Marie doesn’t talk about anyone to me.’
Lit: ‘Marie not talks about nobody to me.’

To represent (11), the authors propose the structure in (12). This structure shows that satisfaction of the Neg Criterion is not restricted to the phrasal position NegP (as in (10)), and may also be satisfied in CP (in West Flemish, at least):

\[(12)\] \[CP (Over **niemand**) \[C \{V-T-AGR-NEG (en-klaapt) \[AgrP \[NegP \[TP \[VP \ldots \right]\ldots \]
In (12), as a result of upward verb movement, there is a negative head in C (marked by *en*). This head is licensed in its surface position because it is in a spec-head configuration with the negative constituent *over niemand* ‘about nobody’. Concurrently, *over niemand* is licensed in the specifier of CP by the negative head in C.

The two negative elements in (11/12) scope over the same set of elements. Haegeman & Zanuttini (1991; 1996) propose that this is what allows for the NC reading in (11), and NC in West Flemish in general: For negative elements to partake in the same negation, they must have identical scope.\(^9\) In other words, negative elements can enter into NC relations if they are syntactically indistinguishable from each other at some level of representation (and at surface structure in West Flemish).

Extending the Neg Criterion to English, simple negated sentences such as (13) may be represented as in (14):

(13) John doesn’t like carrots.
(14) \[
\text{[CP}\ [\text{Agr}\ John] [\text{Agr}\ doesn’t] [\text{NegP}\ \neg] [\text{Neg}\ t(’n’t)] [\text{TP}\ t(’does)] [\text{VP}\ like\ carrots]]]]
\]

As in (11/12), there are also two negatives present in this structure: a phonologically null negative operator (¬), and the negative marker *n’t*. In (14), the Neg Criterion is satisfied in NegP: The negative operator resides in the specifier of the negative head, where we see a trace of affixal *n’t*. In a scrambling language like West Flemish, the Neg Criterion must be satisfied at surface structure. In a non-scrambling language like English, its satisfaction can be delayed until LF, but it may also be satisfied at surface structure (as in (14)).

\(^9\) The process by which the negation gets interpreted as singular is one they call “neg factorization” (cf. Haegeman and Zanuttini 1996). As noted by Haegeman and Lohndal (2010), the process of neg factorization is largely opaque, so I will not attempt to capture its essence.
3.1.1 A problem with the Neg Criterion

As noted by Zeijlstra (2004; In press), one problem with the Neg Criterion proposal is that it does not explain why the following string can be interpreted as DN:

(15a) John didn’t see nobody.
 NC: ‘John didn’t see one single person.’

(15b) John DID N’T see nobody.
 DN: ‘John saw at least one person.’

Abstracting away from the apparent differences between English varieties, we see that an NC reading for the string exists (15a), but there is also a possible DN reading (15b). Applying the Neg Criterion to (15a/b), negative operator nobody must raise to the specifier position of a negative head at LF, such that both negative elements have equivalent scope. To account for both readings, we would have to stipulate that in “NC-varieties” the two negative elements are interpreted as one, but in the standardized variety they are not. However, Zeijlstra (2004; In press) neglects to note that even with this stipulation, the Neg Criterion proposal cannot account for the fact that the DN interpretation (15b) is only felicitous in certain contexts.

In section five I propose an account of sentential negation and NC that encompasses both readings of (15), as well as their contextual restrictions. Setting the issue aside for now, I turn to a discussion of the Agree approach.

3.2 NC as Agree

Recent attempts to capture NC and sentential negation appeal to the notion of syntactic Agree (Chomsky 1995 et seq.). Agree is a relation between a probe (= a c-commanding head
with “uninterpretable” features) and a goal (= a subordinate head with matching but interpretable features). To illustrate the Agree operation in relation to φ-features, consider the category T(ense). T is introduced into a derivation with a bundle of uninterpretable (= semantically vacuous) agreement features like person and number (=φ-features). This bundle of uninterpretable φ-features probes downward into T’s c-command domain to Agree with a noun phrase (a goal) that has matching, interpretable φ-features. The goal provides T’s φ-features with values. If a structure is sent off to an interpretive module (either LF or P(honological) F(orm)) with unvalued uninterpretable features, the derivation will not be legible and will “crash”.

In the literature, Agree has been applied to NC: Zeijlstra (2004) and his followers (cf. Haegeman & Lohndal 2010) assume that a negative feature can be inherently uninterpretable, and as such can act as a probe for the Agree relation. In section 3.2.3 I argue that negative features must be inherently valued. First, I summarize and critique the Agree approach in Zeijlstra (2004).

3.2.1 Zeijlstra (2004)

Zeijlstra (2004) proposes that UG offers two ways to negate a sentence: one semantic, and one syntactic. He assumes that what he calls “sub-standard” varieties like AAE are “NC languages”, and that SAE is not grammatically NC (an assumption I challenge in section five). He argues that “NC languages” have syntactic sentential negation, while “non-NC languages”, which he calls “DN languages”, have semantic negation. Only grammars with syntactic negation project NegP. Under his theory, NegP is the projection of an uninterpretable [uNEG] feature (u stands for uninterpretable). In “NC languages”, NC is realized as “Multiple Agree”. This means that all negative elements within a structure are specified for [uNEG], and they probe upward to
Agree with the same interpretable \([i^{\text{NEG}}]\) feature on the negative operator.\(^{10}\) The structure in (17) is his proposal for NC in “sub-standard” English (16) (Zeijlstra 2004: 258):

(16) John didn’t do **nothing**.
NC: ‘John did nothing.’

(17) \([\text{NegP} \neg[i^{\text{NEG}}] [\text{Neg} \ n't[i^{\text{NEG}}] [\text{vP do nothing}[i^{\text{NEG}}]]]]\)

In (16/17), only the negative feature on the covert negative operator contributes to interpretation; neither the negative marker \(n't\) nor the negative constituent **nothing** contributes a negation.\(^{11}\)

In “DN languages”, sentential negation is not the result of syntactic Agree. Instead, negative elements are all inherently (=lexically) negative and carry an interpretable negative feature \([i^{\text{NEG}}]\). As such, they each contribute a negation. Because NegP is the projection of \([i^{\text{NEG}}]\), if a language doesn’t have \([i^{\text{NEG}}]\), it cannot project NegP. The following is a Standard Dutch example (18) with its LF structure (19) and semantic denotation (20):\(^{12}\)

(18) **Niemand** loopt **niet**. (Standard Dutch)
nobody walks NEG
‘Nobody doesn’t walk.’ (= ‘Everyone walks.’)

(19) \([\text{TP Niemand} [\text{vP niet} [\text{vP t(niemand) loopt]]]]\) (LF)

(20) \(\neg \exists x \ [\text{person'}(x) \& \neg \exists e \text{ walk'}(e,x)]\)

\(^{10}\) Upward probing is an extension of Chomsky’s initial proposal, in which probing is downward.

\(^{11}\) Zeijlstra argues that elements such as **nothing** in (22) are non-quantificational negative indefinites, and as such they do not raise at LF.

\(^{12}\) In (26), “e” represents a “free” event variable introduced in the semantics by \(v\), with no apparent syntactic import.
Though no NegP projects in (19), we see in (20) that both negative elements introduce an operator (¬) that negates a set of elements. The lower operator negates the vP and the higher operator negates the entire clause, resulting in DN.

Zeijlstra’s (2004) model of NC and DN erroneously predicts that (21) is ungrammatical in AAE:

(21) The man didn’t cut down the fence with no gate.

As discussed below in section 5.3.2, (21) is a grammatical DN construction in AAE (and SAE) meaning ‘the man didn’t cut down the fence that has no gate’. If Zeijlstra’s model is correct, and negative elements in ‘NC languages’ have only [uNEG], then AAE grammar should not be able to generate (21). Note that the negative DP no gate is embedded inside the more complex DP the fence with no gate. The edge of this complex DP represents a phase boundary¹³, across which Agree cannot happen. The DP-external negative operator with [iNEG] is therefore excluded from the probing domain of [uNEG] on no gate. If [uNEG] cannot Agree with [iNEG], the construction should crash. If, on the other hand, it is somehow possible for [uNEG] on no gate to Agree across the phase boundary, then an NC reading is predicted. Either way, the prediction is not borne out.

The empirical facts of AAE therefore lead us to reject Zeijlstra’s proposal and pursue a different route. The next section describes a view of Agree leading to the intuitive conclusion that negation is inherently valued. This conclusion forces the abandonment of the Agree approach to NC, and illustrates the basis for the new route taken in section five.

¹³ The concept of phases and their relation to Agree is explained below.
3.2.3 A different view of Agree

Den Dikken (2011) suggests a view of Agree that appeals solely to the notion of feature valuation. To illustrate, referential noun phrases like John have inherently valued \(\phi \)-features (i.e., person and number), but no inherent value for case. Noun phrases need to be valued for case (hence the ungrammaticality of *John to like apples, where non-finite T has no case to assign), but clearly John has no inherent value for case, since it can appear both as nominative subject and accusative object of a verb (as in John likes apples and Mary likes John). We conclude therefore that John is lexically specified for an unvalued case feature that must be valued derivationally. The interaction between case features on noun phrases and agreement features on functional heads indicates that feature valuation is the essential syntactic operation. I therefore adopt Den Dikken’s (2011) view that feature valuation, and not interpretability, is what drives syntax.

With this view in place, I return to the topic of negation. The question is not whether negative features are inherently uninterpretable, but rather whether they are inherently valued. Upon reflection, the answer seems clear: The value of a negative feature is \([\text{+NEG}]\). It is often observed that none of the world’s languages employ word order changes to signal the presence of negation. Negation is always morphologically marked (cf. Horn 2001). This observation supports the conclusion that all negative elements are inherently (=lexically) \([\text{+NEG}]\).

3.3 Conclusion

In this section, I hope to have shown that while much insight into the nature of sentential negation and NC has been gained, we still need a theory that accounts for both NC and DN simultaneously, without appeal to the existence of an uninterpretable negative feature (because,
as we saw in section 3.2, such an appeal makes incorrect predictions). My section five proposal fills this theoretical gap, and in the next section, I explain and contextualize the tools it employs.

4. Two Theoretical Tools

This section describes the theoretical tools I employ in my original proposal in section five. First, I describe Tortora’s (2009) proposal for [finite] feature spreading, which I adopt and extend to the feature [+NEG]. Then, I illustrate López’s (2009) theory of pragmatic contrast, which I use to model the distinction between some DN and NC contexts.

4.1 Feature Spreading

Tortora (2009) observes the following uni-directional entailment in Romance: If a language has ‘low’ object clitic placement in simple tense clauses, then it has ‘low’ object clitic placement in compound tense clauses.\(^{14}\) Tortora provides an explanation that appeals, in part, to her “feature spreading hypothesis”, in which the feature [finite] spreads downward from T (where it is merged) to the heads of lower functional projections. She hypothesizes that the object clitic is incompatible with the feature [finite], and cannot attach to a head specified for this feature. In Borgomanerese simple tense clauses (22), the feature [finite] cannot spread into the

\(^{14}\) The following examples are from Borgomanerese, a language that instantiates this entailment pattern (SCL = subject clitic, CL = object clitic):

Simple tense with object clitic enclisis:

(i) I vonghi-ti.
 SCL see.1SG-CL

(ii) J umma capé-nni.
 SCL have.1PL understood-CL
 ‘We have understood each other.’

Tortora’s analysis rules in constructions such as (i) for Borgomanerese, and (correctly) rules them out for Piedmontese.
verbal domain (demarcated by XP in (22/23) below), hence the object clitic can encliticize there. In Piedmontese (23), the feature [finite] spreads into the verbal domain and object clitic enclisis is impossible. The impact of feature spreading is highlighted, and the vertical line (|) shows where feature spreading stops:

\[
(22) \quad [CP_1 \left[TP_1 \left[T_{\text{finite}} \right] \right] FP_2 \left[\text{finite} \right] \ldots \left[XP \left[\ldots \right] \right] \ldots \quad \text{(Borgomanerese)}
\]

\[
(23) \quad [CP_1 \left[TP_1 \left[T_{\text{finite}} \right] \right] FP_2 \left[\text{finite} \right] \ldots \left[XP \left[\text{finite} \right] \right] \ldots \quad \text{(Piedmontese)}
\]

Crucially, this proposal correctly rules out the non-existent grammar that has low object clitic placement in simple tense clauses but not in compound tense clauses.

The feature spreading hypothesis captures the idea that features essential to a proposition or event, such as [finite], are shared by the functional projections within a clause, not just the one on which they are merged. There are important similarities between Tortora’s feature spreading and Grimshaw’s (2000) theory of extended projections, in which each lexical category has its own series of functional projections that share the categorial features of the lexical head.\footnote{Grimshaw (2000) is a theory of selection, which accounts for why, for example, a verb appears to select for a DP, the projection of a D head, as its object. This apparent selectional relationship is problematic if we assume the fundamental theta-marking relationship to be between the verb and the noun. If the DP shares the feature [noun] with the lexical head it projects (in extended fashion), then a verb selecting a DP is no longer problematic. I refer the reader to Grimshaw (2000) for the full proposal.}

Applying Grimshaw’s concept of extended projections to Tortora’s theory of feature spreading, we see that the feature [finite] can spread only to those elements that share the categorial feature [verbal]. The trajectory of feature spreading is therefore throughout, but no further than, the extended projection of the verb.
Because Tortora’s hypothesis makes correct predictions regarding the facts of Romance, I assume that feature spreading does indeed happen. In section five, I apply feature spreading to sentential negation to show that it also accounts for English NC and DN. First, I explain López’s (2009) theory of pragmatic contrast.

4.3 Contrast

López (2009) provides the tools needed to capture the contextual restrictions of DN. His approach to modeling the syntax-discourse interface involves a consideration of the range of discourse contexts in which various word orders are (in)felicitous. López assumes that syntactic derivations proceed phase by phase. A phase is a syntactic object that is propositional (such as vP), and/or introduces force (CP).16 Phases are subject to the Phase Impenetrability Condition (PIC), which stipulates that only the head and specifier of a phase are visible phase-externally (Chomsky 2001).

López’s analysis reveals the need for only two pragmatic primitives: strong anaphoricity, represented by the feature [+a], and contrast [+c]. He proposes that these features are assigned at the edges of the vP (for [+a]) and CP ([+c], his FinP) phases. Because I intend to employ the pragmatic feature [+c] in my own proposal, I define and illustrate its utility here.

Contrast [+c] is the opening of a domain of quantification. Under López’s theory, a contrasted element may simultaneously represent the opening and closing of a variable. Speaker B in the Catalan example (24) illustrates so-called Focus Fronting, in which a ‘focused’ element is moved to the front of the matrix clause17 (López 2009: 34):

16 Force encodes whether a clause is declarative, interrogative, or otherwise.
17 The notion of focus is taken to mean the same as contrast, i.e., the opening up of a variable.
In (24), speaker B has felicitously Focus Fronted *the knives*. However, we see that Speaker A has only made a declarative statement regarding the spoons. In its fronted position, the element *the knives* in (24) realizes a dual function: It opens up a variable x, which ranges over the domain $\{x = \text{all the things } I \text{ might have given } \text{him}\}$, and simultaneously provides that variable with its value $\{x = \text{the knives}\}$.

Having defined the pragmatic feature [+c] in this way, López proposes that it is assigned at the edge of CP. At this phase edge, the DP *els gavinets* ‘the knives’ in (24) is visible to the pragmatic module (recall the PIC). The pragmatic module may therefore access the syntactic structure to assign [+c], resulting in the following configuration:

\[
(25) \quad [\text{CP} [\text{Els gavinets}]_{+c} [\text{TP li vaig donar}]]
\]

Example (25) shows how in the specifier of CP, *els gavinets* ‘the knives’ has been assigned the feature [+c]. This captures the fact that in its leftmost linearized position (in conjunction with contrastive stress) it fulfills the role of pragmatic contrast [+c].

4.4 Summary

This section has illustrated the necessary tools for my model of sentential negation, NC, and DN. Tortora’s (2009) account of the uni-directional entailment regarding pronominal enclisis in Romance shows that feature spreading may be a real grammatical phenomenon. López’s
notion of pragmatic contrast, and its manner of assignment, enables us to model the relationship between syntactic structures and the discourse. In the next section, I bring these components together to form a new way of modeling sentential negation, NC, and DN.

5. The Proposal

This section details the logic leading to the conclusion that all English varieties have NC grammars. The question of why NC is not realized in SAE is addressed in section 5.5, by appeal to the Barbiers (2005) proposal that some syntactic structures are grammatical but unrealized for sociolinguistic reasons.

5.1 Sentential Negation is Feature Spreading

The NC example in (26) is (5) repeated:

(26) They don’t have no work in the winter. (AppE; Wolfram & Christian 1976)

‘It is not the case that they have work in the winter.’

This example instantiates sentential negation: It reverses the truth value of the proposition that they have work in the winter. I follow Zanuttini (1996) in assuming that English sentential negation entails the presence of a NegP, the projection of a [+NEG] feature with a negative operator (¬) in its specifier (cf. Haegeman & Zanuttini 1991; 1996). If NegP selects TP in English, then the verb’s extended projection is ordered as follows:\(^{18}\)

\[
(27) \quad \text{[CP [NegP [TP [vP ...]
\]

\(^{18}\) I abstract away here from the internal structure of the CP layer, which may display a more refined architecture than is shown here (cf. Rizzi 1997).
Recall from section four that in Tortora’s (2009) account of feature spreading, the feature [finite] can be distributed onto every syntactic head within the verb’s extended projection. Like finiteness, sentential negation also applies to a set of proposition-forming elements. It follows, then, that in sentential negation we might also find feature spreading. I propose that in sentential negation, the [+NEG] feature that is merged in the head of NegP spreads downward as follows. (Grey highlighting indicates the trajectory of feature spreading):

\[
(28) \quad [CP \ [NegP \rightarrow \neg] \ [TP \ T_{\neg} \ [vP \ V_{\neg} \ldots]]
\]

This proposal can now be applied to English NC. In (26) *n’t and no work* together mark a single sentential negation. As explained in section three, I believe an inherently valued [+NEG] feature underlies marked negation. I therefore assume that in all English varieties, negative elements are inherently (=lexically) valued as negative. I further assume, following Chomsky (2001) that vP is a phase, and that only the head and specifier of a phase are externally visible (= the PIC).

In (26), the [+NEG] feature merged in the head of NegP spreads downward. Like [finite] feature spreading, [+NEG] feature spreading applies only to heads within the verb’s extended projection, the lowest of which is v. The vP-embedded negative DP *no work* is part of a distinct extended projection (that of the noun), hence feature spreading cannot extend into DP. However, as a result of [+NEG] spreading into the vP phase, the negative DP complement is made visible to

19 The negative feature spreading I propose here has no relation to Van der Wouden’s (1994) “Negative Spread”, which marks “indefinite expressions” like *nothing* (Zeijlstra 2004).
the sentential negation. The impact of feature spreading is illustrated here. Again, grey highlighting indicates the spread feature, and the vertical line (|) shows where spreading stops:

(29) \([\text{CP} \ 	ext{C}_{\text{NegP}} \rightarrow \text{NEG} \ [\text{TP} \ \text{T}_{\text{NEG}}]_{\text{vP}} \text{v}_{\text{NEG}}]_{\text{DP} \ n_{\text{NEG}}} \ldots \)

In (29) the sentential negation’s [+NEG] feature spreads downward throughout the verb’s extended projection and is present inside the vP phase.

5.2 Why NC is just sentential negation

The negative feature’s presence within vP allows us to capture the facts of NC. Recall the PIC, which states that elements inside a phase (except for its head and specifier) are invisible from outside. Downward feature spreading of [+NEG] from the head of NegP results in the formation of a feature chain, which I call *The [+NEG] chain*:

(30) The Neg Chain: \{\text{NEG}, \text{T}_{\text{NEG}}, \text{v}_{\text{NEG}}\}

The head of this chain is on Neg (the head of NegP), and its foot is on v. Because the [+NEG] of the sentential negation is present on v, all elements within the vP can participate in the single sentential negation, including the DP *no work*, despite the fact that this DP is not part of the [+NEG] chain formed by feature spreading.

We see in (29) that the [+NEG] feature on v and the [+NEG] feature on DP, although merged separately, have identical values. I propose that, because they are positioned within the same phase, they can work together to form the sentential negation in (26). This proposal is fairly uncontroversial if one considers the facts regarding, for example, object agreement within vP.
Take the following Spanish example, in which the verb agrees in number with the object DP (SG=singular):

(31) Llegó Juan.
 arrived.SG John.SG
 ‘John arrived.’

The object DP Juan is inherently specified for the feature [SG], and the verb llegó ‘arrived’ has acquired this value for its inherently unvalued number feature via Agree. The following structure represents the vP in (31):

(32) [vP vSG (llegó) [DP JuanSG]]

The syntactically valued [SG] feature on v and the inherently valued [SG] feature on DP are merged separately, yet interpreted as referring to the same singularity: John’s singularity. In other words, we do not interpret the two [SG] features within vP in (31/32) as two distinct singularities. That v and the object have agreed is orthogonal. The interpretive modules are provided with no evidence of the Agree relation, and all they see are valued features (Den Dikken 2011). Therefore, it must be the case that when the vP is sent to the interpretive modules, the two instances of [SG] in (32) are interpreted as one.

I propose that the interpretation of identical [SG] features is directly analogous to the state of affairs in which two [+NEG] features are present within vP, as in (26). Instead of interpreting these two [+NEG] features as two negations, one sentential and one constituent, we interpret them as a single negation: the structurally higher sentential negation contributed by the negative operator (which operates on the proposition to reverse its truth value) and the [+NEG] chain
(which includes all the relevant heads). We interpret the *sentential* negation because it takes widest scope, over the entire proposition. Note that my proposal makes no reference to syntactic Agree. It simply states that the spelling-out of identical features within the same domain yields the singly semantic interpretation of their content. I therefore define NC in syntactic terms, as the presence of multiple [+NEG] features within the same phase.20

This analysis suggests there is no difference between SAE and other English varieties in which NC is realized systematically. In other words, it entails that SAE also has a NC reading of (26). As stated previously, I do wish to propose that all English varieties (including SAE) are capable of NC. I discuss this issue below in section 5.4, but set it aside for now in order to first address DN. If [+NEG] feature spreading underlies sentential negation, and all negative elements are inherently valued as [+NEG], then it seems a DN reading of a string like (26) should always be impossible. However, as illustrated in section two, such a DN reading is available in certain contexts. I use my remaining tools from section four in the next sub-section to tackle the problem of DN.

5.3 Double Negation

In this sub-section I describe two ways in which the theory of [+NEG] feature spreading accounts for DN constructions. One set of DN constructions is modeled in section 5.3.1 by appeal to pragmatic contrast, following and extending López (2009). The other set is accounted

20 My theory predicts that matrix negative subjects above the [+NEG] chain may behave differently in NC. The observations in Tortora (2008) regarding different types of NC in English varieties suggest that this prediction is borne out. An analysis of these facts is a matter for future research.
for by appeal to restrictions on locality, in a sense made explicit in section 5.3.2. I begin with pragmatic contrast.

5.3.1 DN as pragmatic contrast

López’s (2009) notion of contrast provides a way to account for the DN version of a string like (34). Contrast is the opening of a domain of quantification (DQ), and it can both open and simultaneously close a variable (see section 4.3). It seems to me that negation inherently embodies this definition of contrast. I therefore extend it by applying it not just to pragmatic contrast (i.e. [+c]), but also to semantic contrast. Pragmatic and semantic contrasts are distinguished by the way in which the DQ is built. In a pragmatic contrast, the DQ incorporates information external to the proposition. Example (33) is (24) repeated:

(33) Speaker A: You gave him the spoons. (Catalan)

Speaker B: ELS GAVINETS li vaig donar.
 the knives DatCL PAST give
‘The knives, I gave him.’

The [+c] element els gavinets ‘the knives’ has opened up a DQ that consists of all of the things the speaker may have given him. This DQ consists of {the spoons, the knives, the plates, etc…}. Note that these elements are not all contained in the proposition.21 As such, the element on which [+c] resides must be the very element that provides the value for the opened variable, otherwise the contrast would not be interpretable.

I propose that negation is a form of Lopezian contrast whose DQ always consists of two members. For sentential negation, as in yes/no questions, that domain consists of the affirmative

21 Outside elements are represented in the discourse following the model of Discourse Representation in Asher and Lascarides (2003).
and negative values of the proposition (cf. Romero & Han 2003). Plain sentential negation (like NC) is semantic contrast. In semantic contrast, the grammar does not integrate external information to fill the DQ. Instead, it looks inward, to the information contained within the proposition. This explains why the NC construction in (26) can be uttered out of the blue. The DQ illustrated in (34) contains information provided by the proposition, and the bold represents the selected member:

(34) NC

Speaker A: It’s been hard for people since the mine shut down.

Speaker B: Yeah, they don’t have no work in the winter.

DQ: {They have work in the winter, It is not the case that they have work in the winter}

The DN version of the string in (26/34) is only felicitous when a pragmatic contrast has been introduced. Its DQ is illustrated in (35):

(35) DN

Speaker A: Ever since the mine left town, people don’t have (any) work.

Speaker B: They DON’T have no work in the winter, there’s all that plowing to do.

DQ: {It is not the case that people have (any) work, It is not the case that people have no work in the winter}

The DQ’s for (34) and (35) are distinct. Only (35)’s DQ incorporates information external to the proposition—namely, Speaker A’s statement. This reliance on sentence-external information reveals an interaction with the discourse that must be accounted for.
Recall from section 4.3 that López’s [+c] is assigned at the CP edge. I propose that, in a DN like (35), the feature [+c] has been assigned to the edge of CP. Once [+c] has accessed the syntactic structure it must interact with [+NEG] to fill the DQ. Just as the DQ opening *els gavínets* ‘the knives’ in (33) must be [+c] so that the contrast can be interpreted, the sentential negation in (35) must also be [+c]. I propose that, where pragmatic contrast interacts with sentential negation, the feature [+c] seeks out the head of NegP (which is the head of the [+NEG] chain) to fill the DQ with its two members: the external proposition and the internal (negated) proposition. Once the DQ is filled, the appropriate value (the negated proposition) is selected.

When the feature [+c] finds the head of NegP, it combines with [+NEG]. As a result, the entire [+NEG] chain is specified for [+c], encoding the fact that the negated proposition engages in a discourse contrast. The resulting feature distribution is illustrated here (with all elements of the [+NEG] chain highlighted):

\[(36)\quad [\text{CP} C_{[+c]} [\text{NegP} \sim \text{NEG,+c} \rightarrow \text{TP} \sim \text{NEG,+c} \rightarrow \text{vP} \sim \text{NEG,+c} \rightarrow \text{DP} \sim \text{NEG}...]]\]

The structure in (36) is the same as the NC structure in (29), with one crucial difference: The inherently negative vP-embedded DP can no longer participate in the sentential negation because its feature content is distinct. Recall that feature spreading applies only within the verb’s extended projection, which excludes the DP complement. As such, the negative DP is not included in the [+NEG] chain. Because this chain is specified for [+c], the negative features on \(v\) and on DP are not identical, so despite their presence within the same phase they cannot be interpreted as one. This is the underlying cause of the DN reading in (35), which yields two semantic negations. One of these is a sentential negation, which negates the proposition *that*...
people have no work. The sentential negation is represented by the feature-chain \([+\text{NEG}, +\text{c}]\) in conjunction with the (phonologically null) negative operator. Like in (26), the second negation is a constituent negation contributed by the negative DP no work. But because the two negations have distinct feature compositions—i.e., the propositional negation has the feature composition \([+\text{NEG}, +\text{c}]\), while the negative constituent is just \([+\text{NEG}]\)—a DN reading obtains.

At this point, I define the conditions for DN as follows:

(37) DN is formed when:

(i) A sentential negation is specified for pragmatic contrast \([+\text{c}]\), and

(ii) a negative constituent is present below NegP.

5.3.2 DN and locality

I now turn to a different set of facts relevant to DN. Coles-White (2004) describes a set of experimental items used to test five- to seven-year-old speakers of SAE and AAE on their competence with both NC and DN. Each item is accompanied by an illustration and a verbal context designed to elicit either a DN or an NC response. The following are two of her items (Coles-White 2004: 215, 219):

(38) Context: A man wanted to feed a hungry baby. He did feed a baby, but…

(38a) NC✓/DN#22: …he didn’t feed the baby with no bottle.

(38b) NC# / DN✓: …he didn’t feed the baby with no hair.

22 The DN reading of (38a) is infelicitous here because in the illustration there are two babies and neither has a bottle. The same DN construction would be felicitous if one of the babies had a bottle.
(39) Context: A boy wanted to cut down something with his tools. He did cut something, but…

(39a) NC✓/ DN#: …he didn’t cut down the fence with no axe.

(39b) NC# / DN✓: …he didn’t cut down the fence with no gate.

Interestingly, Coles-White (2004) found no significant difference between SAE and AAE participants: Both groups of speakers readily and correctly interpreted the felicitous NC structures as single sentential negations (in support of the hypothesis that SAE and ‘NC varieties’ of English are grammatically the same in this regard), and both groups had more difficulty with the DN constructions overall.

An examination of (38) and (39) reveals that, while a pragmatic contrast is present, its nature is distinct from that of (35), in which the DN construction denies a previous assertion. I have argued that in DN constructions like (35), the feature [+c] combines with the sentential negation to yield the correct DQ. In (38) and (39), however, the contrast is not associated with a sentential negation. The context provides an assertion (*A man fed a baby* for (38) and *A boy cut something* for (39)), but the sentential negation that follows *but…* does not deny that assertion. Rather, it assumes the assertion, and adds additional information. In (38) it specifies what the man fed the baby, and in (39) it states what the boy cut. As such, there is no contrast between the sentential negation and the discourse assertion, so we cannot say that the sentential negation is specified for [+c].

23 In fact, the contrast introduced in the discourse appears to be associated with a noun phrase in both cases. The model in López (2009) does not assert that [+c] is necessarily associated with all elements that apparently engage in a discourse contrast, and leaves open how a vP embedded DP might be interpreted as discourse contrastive in a language like English (where such elements tend to remain in situ).
Despite the fact that we cannot appeal to the presence of [+c], the hypothesis that sentential negation is feature spreading can still explain these data. Note that in both examples, the two possible responses end in a P(repositional) P(hrase) (with no…). The parser has the following two options for attaching this PP: it can be attached to VP, or it can be attached inside the complement noun phrase forming a complex DP. In the case of the felicitous NC reading in (38a), the PP modifies the verb, and is attached at the VP level:

\[(40) \text{NC} \checkmark\]

This structure illustrates that the [+NEG] feature on v and the [+NEG] feature on the DP no bottle are present within the same spell-out domain, thus meeting the conditions for NC described above. Both of these [+NEG] features can therefore be interpreted as referring to the same (sentential) negation.

The structure for the infelicitous NC reading of (38b) is identical to (40):
The structure in (41) is grammatical but infelicitous. Specifically, the NC reading in (38b) is ruled out because hair cannot be used to feed a baby. If the PP with no hair modifies the VP, as in (41), then we should interpret the construction in this nonsensical fashion. The NC reading is thus grammatically possible, as (41) shows, but must be ruled out on semantico-pragmatic grounds.

The felicitous DN readings in (38b) and (39b) have linear strings that appear very similar to the NC constructions. In these cases, however, the PP is attached DP-externally: ²⁴

²⁴ The structure in (42/43) also applies to the felicitous DN reading of He didn’t feed the baby with no bottle (see fn. 22).
This structure is distinct from that of (40/41) in that the PP modifies the noun phrase (*the fence*), and not the verb (*cut down*). Interestingly, the internal structure of the DP *the fence with no gate* is more complex than the DP *the baby* in (40/41). Adopting Den Dikken’s (2006; 2007)
definition of a proposition, we see that the complex DP in (42) (and (43) too) constitutes a complete proposition: it has a subject (the DP *the fence*), a predicate (the PP *with no gate*), and an element that relates the two. Complete propositions are phases (Chomsky 2001; Den Dikken 2007). Therefore, the complex DP in (42/43) is a phase, and represents its own spell-out domain. My theory of sentential negation and NC therefore explains how the felicitous DN readings for (38b) and (39b) are obtained: the [+NEG] feature in the complex DP is spelled out (hence interpreted) independently of the sentential negation represented as [+NEG] on v, yielding two semantic negations, one sentential and one constituent.

It is possible to rule out the DN reading for (39a) in the same way that we ruled out the infelicitous NC reading of (38b): If the structure of (39a) is as in (42/43) with the PP attached DP-internally, the DP constituent *the fence with no axe* is formed. Because the property of having an axe cannot be felicitously predicated of *the fence*, it can be ruled out on lexico-semantic grounds.

I conclude with a revised definition of DN. The following applies to the broadened range of facts discussed in this sub-section:

25 In Den Dikken’s (2006) theory, the element that relates the subject and predicate in this complex DP is a null relator head (R), and the entire phrase is a relator phrase (RP). For reasons of space, I cannot illustrate Den Dikken’s structure.

26 My analysis predicts that the subject of a phasal DP may be interpreted with the sentential negation, yielding NC. Consider (i):

(i) John didn’t buy no car with broken headlights.

In (i), the phasal DP *no car with broken headlights* has a negative subject, *no car*. As the specifier of a phase, the negative subject should be visible to the sentential negation (recall that the PIC conceals only phase-embedded elements). As an SAE speaker with (by hypothesis) an NC grammar, I interpret (i) as NC, not as DN. An investigation of constructions like (i) is set aside for now.
(44) DN is formed when either (A) or (B):

(A) i. A sentential negation is specified for pragmatic contrast [+c], and

ii. a negative constituent is present below NegP.

(B) Two or more [+NEG] features are merged in distinct spell-out domains.

5.4 Applying the Model: Three negative elements in a clause

I now return to example (4) with three negative elements in the clause, repeated here as (45):

(45) I don’t never have no problems. (Green 2002)

NC: ‘I never have (any) problems.’

The DQ for (45) consists of the affirmative and negative forms of the proposition, and the negated form is selected:

(46) DQ for (45)

{I have problems, I never have problems}

I have argued that NC results because [+NEG] spreads and all [+NEG] features local to the sentential negation are interpreted as one. The derivation for (45) thus proceeds as follows:

(47) [CP C[NegP ¬NEG TP I [T don’t NEG [AspP never NEG [vP have NEG [DP no problems NEG]]]]]]
I assume that the temporal adverb never is merged in the specifier of a vP-external Aspectual Phrase (AspP). This position is lower than NegP, hence within the realm of elements that can share in the sentential negation. Because all [+NEG] features are within the domain of the sentential negation, the derivation successfully yields the singly semantic negation of NC.

5.5 Negative Polarity

When occurring in the scope of negation, lexical items such as any, anything, and ever are Negative Polarity Items (NPIs). NPIs are relevant to an analysis of NC for the following reason: replacing the negative constituent in an NC construction with an NPI yields a semantic equivalent. Compare (48) with (49):

(48) NC construction: John didn’t say nothing.

(49) NPI construction: John didn’t say anything.

Details aside, (48) and (49) can be logically represented in exactly the same way:

(50) ¬ ∃ x [John said (x)] (= (48) and (49))

My analysis of sentential negation as feature spreading asserts that NC constructions like (48) are grammatical (i.e. can be generated) in all English varieties. It successfully rules out infelicitous

27 I am again abstracting away from more detailed analyses of the internal structure of the clause, in this case with respect to adverb positions, as in Cinque (1999) and Tortora (under review).

28 It is unclear whether the sentence in (54) could ever be a pragmatic contrast. Because there are three negative elements present in the structure, my model predicts that it should yield a Triple Negation (TN), with a structure similar to what I have proposed for DN. However, it is difficult to conjure a reasonable context in which the TN reading is felicitous, and even more difficult to compose its meaning. I set this issue aside for future research.
NC and DN readings, and accounts for contexts where they are employed felicitously. However, potentially fatal for my analysis is the observation that SAE speakers do not systematically produce NC. Furthermore, given a choice between (48) and (49), SAE speakers choose (49) as representative of their variety.

If we conclude on the basis of these observations that NC is not grammatical in SAE, then my proposal is obviously wrong. However, it is unclear if the problem applies in reverse. Wolfram and Fasold report that “for most nonstandard dialects” (including AppE and AAE), NC and NPI constructions are used variably (1974: 164). However, in studies of adolescent New York City AAE speakers, only NC constructions were found (Labov et al. 1968; Wolfram et al. 1971). It seems then that we have three groups of speakers: SAE speakers who use only the NPI variant, New York City adolescent speakers of AAE who use only the NC variant, and a third group that employs both, which includes speakers of ‘non-standard’ varieties.

Under a theory that assumes NC and NPI constructions instantiate two different grammars (à la Kroch 1994), NPI-only speakers would represent one grammar, NC-only speakers would represent another, and speakers that variably use NC and NPI constructions would have both grammars and use them interchangeably. While this approach may be correct for some phenomena (cf. Tortora, to appear), I believe it is the wrong approach for NC. The problem with assuming that NC and NPI constructions represent two different grammars is that we are again faced with modeling the fact that apparently ‘NC varieties’ employ and interpret DN in the same way as ‘non-NC’ varieties. Furthermore, we would still have to capture the fact that speakers of the ‘non-NC’ variety interpret NC in the same way that ‘NC varieties’ do (cf. Coles White 2004). As I hope to have illustrated in section three, a model that assumes two
different grammars for ‘NC’ and ‘non-NC’ varieties cannot account for all of these facts, and makes erroneous predictions.

5.5.1 NC as a grammatical option in all English varieties

I therefore hypothesize that NC is grammatical in SAE, it is just not realized. In a similar vein, NPI constructions may be grammatical in New York City Adolescent AAE, but just not realized. This hypothesis follows the logic in Barbiers (2005), who proposes the concept of “unrealized” (vs. “ungrammaticalized”) structures. Barbiers observes that Dutch varieties have a substantial amount of variation in the ordering of three-verb clusters (i.e., modal + auxiliary + participle), and provides a principled account of the phenomena: Of the six logical possibilities, only five are attested across all varieties. Crucially, his syntactic analysis successfully rules out the unattested order. The remaining five orders are shown to be grammatical and realized with varying degrees of frequency. I quote Barbiers directly:

“All orders that the grammatical system allows are, in principle, available for each speaker in the Dutch language area, but which orders a speaker actually uses or reports to occur in his dialect depends on the input from the environment.”
(Barbiers 2005: 255)

For NC the issue is not word order but rather the number of negative elements allowed to appear in a single sentential negation (this restriction does not apply to DN). Because SAE is the only variety of English in which NC is not realized, it is likely that most (if not all) SAE speakers have been exposed to NC. I would liken the perception of NC to an extreme form of the perception of so-called “preposition-stranding”, which we know is grammatical in English (cf. Chomsky 1986), but which speakers of SAE learn is unacceptable in certain contexts (such as academic prose).
A sociolinguistic analysis of NC in English, which assumes its fundamental grammaticality in all varieties, is beyond the scope of this paper. I simply state that NC is grammatical but unacceptable to SAE speakers and therefore unrealized. Concurrently, it may be that NPI constructions are grammatical in New York City adolescent AAE, just unacceptable and therefore unrealized. For those speakers for whom both NC and NPI constructions are realized systematically (i.e., all other speakers of American English), we may have found another instance of Barbersian optionality. Because the account of sentential negation, NC, and DN provided above is principled, accounts for a wide range of data, and makes correct predictions, I believe this is what we have found.

6. Conclusion

In this paper I adopted Tortora’s (2009) proposal of [+NEG] feature spreading as a syntactic mechanism, and applied it to the realm of negation, expanding on Haegeman and Zanuttini’s (1991) original model of sentential negation. By adding [+NEG] feature spreading, I accounted for the facts of NC, and explained why it results in sentential negation. I also proposed that negation is a form of contrast, and argued that when the domain of contrast integrates sentence-external information, we have a case of pragmatic contrast [+c], à la Lopez (2009). This hypothesis, in conjunction with [+NEG] feature spreading, explains why some DN constructions require special contexts. Crucially, my model does not erroneously predict that English varieties that employ NC are incapable of employing and interpreting DN.

Interestingly, my proposal predicts that speakers of all English varieties interpret DN in exactly the same way. This prediction has already been tested and confirmed in Coles-White (2004) for children aged five to seven. However, the Coles-White study involved only items
where DN resulted from the presence of [+NEG] in different spell-out domains. The prediction should also be tested with adult speakers, not only for the Coles-White type DN constructions but also for contexts where DN is pragmatic contrast. If adult speakers of SAE, AppE, and AAE interpret DN in exactly the same way then we will have found support for the model presented here.

The proposal that sentential negation is feature spreading à la Tortora (2009) opens up new possibilities for inquiry. As such I believe it represents progress. That the proposal leads to the conclusion that all varieties of English are capable of NC lends new support to the view of grammar proposed in Barbiers (2005), in which not all grammatical structures are necessarily realized. This view may complicate the generative endeavor, but it also allows for a more inclusive representation of the facts of natural language.

References

